
Chapter 17

Planar Graphs

17.1 Drawing graphs in the plane

As we have seen in class, graphs are often visualized by drawing them in the plane—
vertices are drawn as points, and edges as curved segments (called arcs) that connect
the corresponding points. A graph together with a drawing of it in the plane is called
a topological graph.

A graph is called planar if there exists a drawing of it in which the interior of any
arc does not touch or intersect any other arc. That is, two distinct arcs are either
disjoint or touch at endpoints that they share. A planar graph together with a planar
drawing of it is called a plane graph.

It is easy to verify that paths, cycles and trees of any size are planar. Transporta-
tion networks often provide examples of planar graphs, and graph planarity became
important in computer science due to a connection with VLSI circuit design. Planar
drawings are often considered superior when visualizing graphs, as they have no edge
crossings that can be mistaken for vertices. In fact, a whole subfield of computer
science called graph drawing is devoted to the study of various kinds of drawings of
graphs.

It might not be obvious at first that there are any nonplanar graphs at all. There
are, but we’ll have to do some work to prove this, and we’ll need two preliminary
steps just to approach this issue. The first is to define the faces of a plane graph and
the second is to mention the (in)famous Jordan curve theorem.

Let us begin with faces. Define an equivalence relation on the plane as follows:
Two points a, b ∈ R2 are equivalent if they can be connected by an arc that does not
intersect the edges of a given plane graph G. Then the set of all points that belong
to a particular equivalence class of this relation are said to be a face of G. Intuitively,
if we draw G on a white sheet of paper with a black pencil, the faces are the white
regions; alternatively, if we cut the paper along the edges of the drawing, the faces
are the resulting pieces. Note that faces are defined for plane graphs, but not for
planar graphs without a drawing: Different drawings of the same graph can produce
different sets of faces!

The second piece of mathematical equipment we’ll need to study planar graphs
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is the Jordan curve theorem.1 It is a classical example of a mathematical statement
that is intuitively obvious, but exceedingly difficult to prove. (Related specimens
that arguably fall into this category are Kepler’s conjecture and the Kneser-Poulsen
conjecture.)

Theorem 17.1.1 (Jordan curve theorem). Every closed non-self-intersecting curve
γ in the plane separates the plane into exactly two regions, one bounded and one
unbounded, such that γ is the boundary of both. Alternatively, a plane drawing of any
cycle Ci, for i ≥ 3, has exactly two faces.

To see why the Jordan curve theorem is not so easy to prove recall that there are
some crazy curves out there—just think about fractals like the Koch snowflake. How
would you go about proving that such monsters have “interior” and “exterior”?

The following corollary follows from the Jordan curve theorem by routine argu-
ments.

Corollary 17.1.2. Consider a plane graph G and an edge e that is part of a cycle in
G. Then e lies on the boundary of exactly two faces of G.

17.2 Euler’s formula

The fundamental tool in the study of planar graphs is Euler’s formula, presented by
Euler in 1752.2

Theorem 17.2.1 (Euler’s formula). Let G be a connected plane graph with n vertices,
e edges, and f faces. Then

n− e + f = 2.

Note that the theorem need not hold if the graph is not connected—Just think of
a collection of isolated vertices. On the other hand, the formula remains true even
for (non-simple) graphs with multiple edges and self-loops.

Proof. The proof proceeds by induction on the number of edges. If there are none,
the graph consists of a single vertex, the drawing has one face, and the formula holds
as 1− 0 + 1 = 2. Assume that the formula holds for all plane graphs having k edges.
Consider a plane graph G = (V, E) with n vertices, f faces, and k + 1 edges. We
distinguish between two cases:

G is a tree. In this case n = k + 2, due to a tree characterization we have seen
previously, and f = 1 since any planar drawing of a tree has exactly one face.
Then the formula holds as (k + 2)− (k + 1) + 1 = 2.

1Jordan gets all the press even though his proof of the theorem was wrong, and it took almost
20 years until Veblen found a correct one in 1905.

2Caution: Due to Euler’s prodigious output, there are multiple “Euler’s formulae”, “Euler’s
theorems”, etc.
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G has a cycle C. Take an edge e that lies on C and consider a plane graph G′ =
(V, E \ {e}), whose vertices and edges are drawn as in G. By Corollary 17.1.2,
the edge e is adjacent to two faces of G, and these faces “merge” into one in G′.
Thus G′ has n vertices, f − 1 faces, and k edges. By the induction hypothesis,
n− k + (f − 1) = 2, hence n− (k + 1) + f = 2.

This completes the proof by induction.

Euler’s formula implies that the number of faces of a plane graph does not depend
on the drawing, so even though the faces themselves are only defined for a particular
drawing, their number is fixed a priori for any planar graph! The formula has a
number of other consequences that are frequently used in theoretical computer science.
These consequences say that planar graphs have few edges, and always have at least
one low-degree vertex. As they make abundantly clear, not only are not all graphs
planar, but most graphs aren’t. (Do you understand the sense in which the theorem
below implies this?)

Theorem 17.2.2. For any simple planar graph G with n vertices and e edges:

(a) If n ≥ 3 then e ≤ 3n − 6. If e = 3n − 6 then every face of G is a 3-cycle (a
“triangle”) and G is called a triangulation.

(b) There is a vertex of G that has degree at most 5.

Proof. The proofs of the two parts are similar in their clever use of Euler’s formula:

(a) If G is not connected, we can add edges to connect G while maintaining its
planarity. Assume therefore that G is connected. Let f be the number of faces
of G. For such a face t, let α(t) be the number of edges adjacent to t and
consider the sum

∑
t α(t) that ranges over all faces t of G. As each edge is

adjacent to at most two faces, a particular edge is counted at most twice in the
above sum. Hence ∑

t

α(t) ≤ 2e.

On the other hand, each face has at least three edges on its boundary, so∑
t

α(t) ≥ 3f.

We get 3f ≤ 2e, and, using Euler’s formula, 3(2− n + e) ≤ 2e and

e ≤ 3n− 6.

Finally, if e = 3n − 6 then 3f = 2e and it must be that every face has exactly
three edges on its boundary.

(b) If the graph is disconnected we consider one particular connected component
of it, so assume that G is connected. If G has two vertices or less the result
is immediate, so assume that n ≥ 3. Recall that dG(x) denotes the degree of
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a vertex x in G. The sum
∑

x dG(x), ranging over the vertices x of G, counts
every edge twice, so ∑

x

dG(x) = 2e.

As we have seen, e ≤ 3n− 6, so∑
x

dG(x) ≤ 6n− 12.

If the degree of every vertex is at least 6, we get

6n ≤ 6n− 12,

which is a contradiction. Therefore, there must be a vertex with degree at most
5.

An intuitive way to think about Theorem 17.2.2(a) is that once a graph has too
many edges, there is no more room for them in the plane and they start intersecting.
This gives a way to prove that a particular graph is not planar. Take K5, for example.
It has 5 vertices and 10 edges, and 10 > 3 · 5− 6. Thus K5 is not planar! In fact, no
Kn is planar for n ≥ 5, since they all contain K5 as a subgraph. On the other hand,
Kn is planar for n ≤ 4, as can be demonstrated by their simple planar drawings. This
illustrates a point that might be obvious by now: proving a graph to be planar is
often easier than proving the opposite. (Just draw it!tm)

How about complete bipartite graphs? It is easy to verify that Ki,j is planar when
i ≤ 2 or j ≤ 2. The smallest remaining suspect is K3,3. Playing around with drawings
doesn’t help: There seems to be no way to draw K3,3 without intersections. Let’s try
the trick that worked for K5: The number of vertices of K3,3 is 6, its number of edges
is 9, and 9 ≤ 3 · 6− 6. No luck. We need a stronger tool, and here it is:

Proposition 17.2.3. For any simple planar graph G with n vertices and e edges, if
G does not contain a cycle of length 3 then e ≤ 2n− 4.

Proof. We can assume that G is connected as in Theorem 17.2.2. Let f be the number
of faces of G and let α(t) be the number of edges adjacent to a face t. These edges
make up a cycle in G, and thus their number is at least 4, implying α(t) ≥ 4. Consider
the sum

∑
t α(t), over all faces t of G. Each edge is adjacent to at most two faces,

thus
4f ≤

∑
t

α(t) ≤ 2e.

Using Euler’s formula, we get 4(2− n + e) ≤ 2e and e ≤ 2n− 4.

With this result we’re finally in business: K3,3 does not contain an odd cycle since
it is bipartite, thus every cycle in the graph has length at least 4. Since 9 > 2 · 6− 4,
K3,3 is not planar. Let’s summarize what we’ve learned.
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Theorem 17.2.4. Kn is planar if and only if n ≤ 4 and Ki,j is planar if and only if
i ≤ 2 or j ≤ 2.

At this point we have laid the groundwork for one of the most striking results
concerning planar graphs, known as Kuratowski’s theorem. To state it we need the
following definition:

Definition 17.2.5. Given a graph G = (V, E), an edge subdivision operation on an
edge {u, v} of G results in the graph (V ∪{x}, (E \{{u, v}})∪{{u, x}, {x, v}}), where
x 6∈ V is a new vertex. A graph G′ is said to be a subdivision of G if it can be obtained
from G by successive applications of edge subdivision.

Kuratowski’s theorem says that not only are K5 and K3,3 non-planar, but every
non-planar graph contains either a subdivision of K5 or a subdivision of K3,3. That
is, the graphs K5 and K3,3 characterize the whole family of non-planar graphs!

Theorem 17.2.6 (Kuratowski’s theorem). A graph is planar if and only if it does
not contain a subdivision of K5 or a subdivision of K3,3 as a subgraph.

17.3 Coloring planar graphs

You might have heard of the four-color problem. It was posed in the mid-19th century
and occupied some of the best discrete mathematicians since that time. The original
formulation is in terms of political maps. In such maps, neighboring countries are
drawn with different colors. The question is how many colors are needed. It is easy
to construct simple examples of maps that need at least four colors. The four color
problem asks whether four colors always suffice, for any political map. (We require
that every country is connected, unlike, say, the US.)

This problem is equivalent to whether every planar graph can be colored with
four colors. (To see this, construct a graph whose vertices correspond to countries
and whose edges connect neighbors through border segments.) It took over a century
until Appel and Haken found a proof that four colors always suffice, and even that
was possible only by using computers to conduct extensive case enumeration and
analysis. To this date no proof of the four color theorem is known that does not rely
on computers. On the other hand, in 1890 Heawood discovered a beautiful proof that
five colors always suffice. To prepare for his proof, let us warm up by showing that
every planar graph can be colored with 6 colors. The proof is surprisingly simple.

Theorem 17.3.1. The chromatic number of a planar graph G is at most six.

Proof. By induction on the number n of vertices of G. If n ≤ 6 the claim is trivial.
Assume every planar graph with at most k vertices can be colored with 6 colors or
less, and consider a graph G = (V, E) with k + 1 vertices. By Theorem 17.2.2(b),
there is a vertex v of G with degree at most 5. Let G′ be the induced subgraph of
G on the vertices V \ {v}. By the induction hypothesis, G′ can be colored with five
colors or less. Color the vertices V \ {v} of G with the colors that they are assigned
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in the coloring of G′. Assign to v the color that is not used by its neighbors. Since
the degree of v is at most five, such a color exists. This specifies a valid coloring of
G.

We are now ready for Heawood’s five color theorem.

Theorem 17.3.2. The chromatic number of a planar graph G = (V, E) is at most
five.

Proof. The proof proceeds by induction on the number n of vertices of G. The base
case is trivial. Assume every planar graph with at most k vertices can be colored with
5 colors or less, and consider a graph G = (V, E) with k+1 vertices. Let v be a vertex
of G with degree at most 5. If dG(v) < 5 we can produce a 5-coloring of G as in the
proof of Theorem 17.3.1. Assume dG(v) = 5 and let c : (V \ {v}) → {1, 2, 3, 4, 5} be
a 5-coloring of the induced subgraph G′ of G on the vertices V \ {v}. This coloring
exists by the induction hypothesis.

We consider a particular drawing of G in the plane and henceforth regard G as a
plane graph. Let v1, v2, v3, v4, v5 be the neighbors of v in the order they appear around
v in G. (That is, according to one of the circular orders in which the corresponding
edges emanate from v in G.) Without loss of generality, assume that c(vi) = i for
1 ≤ i ≤ 5. (Note that if some color is unused by v1, v2, v3, v4, v5, we can simply assign
that color to v.) We distinguish between two cases: Either there does not exist a
path between v1 and v3 in G that uses only vertices of colors 1 and 3, or there does.

There is no such path. In this case consider the subgraph G′′ of G that is the
union of all paths that begin at v1 and use only vertices with colors 1 and 3.
Note that neither v3 nor its neighbors belong to G′′. We produce a 5-coloring
of G as follows: All the vertices of G′′ of color 1 are assigned the color 3, all the
vertices of G′′ of color 3 are assigned the color 1, the vertex v is assigned the color
1, and all other vertices of G keep the color assigned by c. No monochromatic
edges are created by this assignment and the coloring is valid.

There is such a path. Consider a path P from v1 to v3 that uses only vertices with
colors 1 and 3. Together with the edges {v, v1} and {v, v3} this forms a cycle.
The vertices v2 and v4 lie on different sides of this cycle. (Here we use the
Jordan curve theorem.) Therefore there is no path between v2 and v4 that uses
only vertices with colors 2 and 4, and we can apply the reasoning of the previous
case.

17.4 Concluding remarks

There are many more amazing results associated with planar graphs. Two of the most
striking are Fáry’s theorem and Koebe’s theorem. Fáry’s theorem states that every
planar graph can be drawn in the plane without edge crossings, such that all the arcs
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are straight line segments. Koebe’s theorem says that every planar graph is in fact
isomorphic to an “incidence graph” of a collection of nonoverlapping discs in the plane.
(The vertices of this graph correspond to the discs, and two vertices are adjacent if
and only if the corresponding disks are tangent.) Fáry’s theorem is an immediate
consequence of Koebe’s theorem, although they were discovered independently. Both
are remarkable.
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